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A guidance game problem is analyzed for a linear conflict-controlled system 

when the game’s payoff has the meaning of the Euclidean distance of the 

phase point from the origin. A certain modification is suggested for the 
extremal aiming rule Cl], which under specific conditions quarantees one of 
the players a result not worse than in the corresponding program problem on 
maximin for the initial position. The paper relies on the idea of a position 
differential game, developed in [l, 21. 

1. We consider a conflict-controlled system described by the vector differential 
equation 

Y’ = A @>!I + B (t)u - C (t)u, u E P, u E Q 

where I/ is the n-dimensional phase vector, u and u are r-dimensional 

controls of the first and second players, respectively, A (t), B (t), and c (t) are 

matrices of appropriate dimensions, continuous in t and P and Q are convex 

closed bounded sets. The game is analyzed on a specified interval t, ,< t < 6 

and the payoff y tS1 is represented by the equality 

Y [@I = II {Y wrn II 
Here and subsequently 11 2 11 is the Euclidean norm of vector z and {z.>~~ is a 

vector composed of the first m components of vector 2. The system being analyzed 

can be reduced by a nonsingular linear transformation to the form (see [2] ) 

IC’ = B (t)u - C (t)u, u E P, u GE Q (1. 1) 

where z is an m-dimensional vector, B (t) and C (t) ate matrices continuous in t 

and the game’s payoff has the form 

In what follows it is convenient to use a system transformed to form (1. 1). 
The first player chooses a control u [t] E P and tries to minimize the quantity 

y [+I on the trajectories 2 [t] (to < t < 6, z [tal = ta) of system (1. l), 
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realized under his control u [tl (to < t < 8) ’ p U-I air with any integrable realization 
v [tl E Q of the second player’s control. The second player has the opposing 

purpose and tries to maximize the quantity y [$%I in (1.2). 

The admissible strategies U and V of the first and second players, respectively, 
are specified to be convex, closed and upper semi-continuous by inclusion under a 

change of position by sets u (t, r) C P and T/’ (t, 2) C Q; by motions we mean the 

solutions of the corresponding contingent equations. Let (y [@lit,,, zo, u, u) be a 
realization of the quantity y [+I (1.2), corresponding to the initial position {to, x0} 

under certain controls u and v. 

P r o b 1 e m 1. Among the first player’s admissible strategies U find the strategy 

U* which for any initial position guarantees the game result 

(Y [S] I to, x01 u*, v) B e, (to, x0) 

under any admissible control method of the second player. 

P r o b 1 e m 2. Among the second player’s admissible strategies Vfind the 
strategy V* which for any initial position {to, ~a} guarantees the game result 

under any admissible control method of the first player. 

In these problems the quantity Eo(tO, x0) is the program maximin for the initial 

position {to, x0} and is defined by the equality [l] 

0 

80 (to, x0) = mqpll+ 
[S 

maxvEQ i’c (t) u (t) dt - (1.3) 

6 
to 

s maxuEpZ’B (t) u (t) dt - Z’zo] 
tr 

if the right-hand side of this equality is positive; otherwise, eo(&, 50) = 0. The 

prime denotes transposition. We assume that z. (to, x0) > Ofor the initial position 

{to, 201 l 

2. Let the following condition [2] be fulfilled: the function 

3c (I, t) = max,pl’B (t)u - maXvEQ I?‘C (t)V (2. 1) 

is convex in E for all t E ito, 01 (Condition A). This is a necessary and sufficient 
condition for the maximum on the right-hand side of (1.3) to be achieved on a unique 
vector I, = Z,(t,, x0), In addition, when this condition is fulfilled the function 

x (I, t) is [2.3] the support function of the convex closed set 

f?(t) = v~Q{B 0) JJ - C(t) VI (2. 2) 
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We shall examine the program controls u”(t, Z,) and v’(t, Z,), to < t < 6, 
satisfying for almost all t the maximum conditions 

Z,‘B (t) u’(t, lo) = maxGpZO’B (t)u 

Z,‘C (t)u”(t, I,) = max,,oZ,‘C (t)u 

(2.3) 

(2.4) 

where I, is that vector IO = I, (to, 20) on which the maximum on the right-hand 
side of (1.3) is achieved. 

L e m m a 1. If sets P and Q are convex and Condition A is valid, then program 
controls u” (t, 1,) and u” (t, Z,),measurable in t , exist and satisfy maximum 

conditions (2.3) and (2.4) for almost all t E [to, d&for which the inclusion 

h” (t, 1,) = {B (t) u” (t, I,) - c (t) u” (t, 1,)) E Jf (f) 
(2.5) 

holds almost everywhere on the interval [r,, @] , 

P r o o f. The functions max,,p Z’B (t) u and maxVEQ1 C(t) v are support 

functions for the convex closed bounded sets {B (f) P} and {C (f) Q}. Consequently, 
the sets {I? (r) u,) and {C (t) V,} of the vectors u0 an V” on which the maximum on 
the right hand sides of (2.2) and (2.3) is achieved when 1 = 1, are the subdifferentials 

of the corresponding support functions at point 3 1, [4]. Since function x (1, t) is 

convex in 2 and is [2.3] the support function of set H (f) of (2.5), its subdifferential 

HI (f) at point 2 = 1, in sum with {C (1) VI> yields the set {B (f) v,). Hence follows 
the validity of inclusion (2.5). It remains to show that functions u” (r, 1,) and 
ZP (f, I,) can be chosen measurable. Indeed, the sets 1B (f) UI), {C (f) VI) and 
HI (f) are upper semi-continuous by inclusion as # varies; therefore, we can 

choose [1,5] measurable functions C (f) v” (f, I,) E {C (f) V,l and h” (f, fd E HI (f) , 

and, then, B (f) u” (f, 2,) being the sum of two measurable functions, is measurable 

too. 
Let us now define the first player’s strategy U*,Suppose that some position 

{t, J: [t]) has been realized. On the interval t \( z < 6 we choosecontrols 

u”(.Z,) = u” (r, lo) and u” (* Zo) = u” (z, lo) which satisfy the maximum 

conditions (2.3) and (2.4) for almost all ‘G E [t,61 and for which inclusion (2.5) 
holds. We consider the motions (‘6; t, 2 It], u” (*I,), u” (.Z,)), ‘c E It, s]of system 
(1. l), generated by the controls u = uG (- I,) and u = u” (. 1,) under the initial 

condition x (t; t, 2 [tl, uc (-lo), u” (-I,)) = 2 [il. 

Definition 1. Let an m-dimensional vector s (t) be defined by the 

equality 
s (t) = - 22 (e; t, z M, UC (. lo), ?I3 (*lo)) (2.6) 

Then the first player’s strategy U* is defined in the following manner: 
1) if s (t) is a nonzero vector for a position {t, 5 it]} then with this position we 

associate a set U* (t, z [t]) of all vectors u* which satisfy the maximum 
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condition 

S’ @)I? (t)U* = max=p s' (t) B (t) 24 (2.7) 

2) if, however, S (t) is a zero vector for a position {t, z [tl},then we assume 
that U* (t, 2 M) = P. 

From the Cauchy formula determining z (8; t, z [tl, u” (ml,,), V” (-1,)) 
and from the results in [l] it follows that strategy u* defined by conditions 1) and 2) 
is admissible. 

T h e o r e m 1. If sets P and Q are convex and Conditions A is fulfilled, then 

the first player’s strategy Ut constructed in accord with Definition l), guarantees 

him the game result (y [e] 1 t,, x0, U*, v) < e, (t,,, q,) under any admissible 

control method of the second player. 

P r o o f. Consider the function 

e It1 = E (t, x [tl) = 11 x (6; t, s Itl, 24” (.I,), V" (.Z,))p 

Strategy U* is admissible and, therefore, the derivative de [t] / dt defined by 

de [tl/dt = 2s’ (t) Pz” (t, I,) - {B (t) u [tl - c (t> v [tl}l 

exists for almost all t , By the construction of set n (t) for any admissible 
realization u [t] we can find an admissible control u(l) (t) for which 

h” (t, I,) = {B (t) u(l) (t) - c (t) v M} 

Therefore, 

de M/dt = 2s’ (t) {B (t) u(l) (t) - B (t) u [tl} 

From this equality and maximum condition (2.7) it follows that when ZJ [t] = U* 

the inequality de It1 / dt f 0 is valid for almost all t for any position {t, z} at 

which E [tJ > 0. Now taking into account that the equalities E [t,] = eo2 (to, x0) 
and ~2 [e] = e [Sl hold by the definition of the auxiliary function 8 [tl , we 
conclude that the theorem’s assertion is valid. 

The second player’s strategyV* , solving Problem 2, is constructed similarly. 
Let the functionx (I, t)of (2. l), appearing in Condition A, be concave in 1 for 
each t E [to, gJ$hen by analyzing the set 

instead of set N (t) ) we can prove a lemma similar to Lemma 1. The second 
player’s strategy V* is specified by the set V* (t, x It]) of vectors V* satisfying the 
maximum condition 

S’ (t) C(t) v* = max,,q s’(t) C(t) v 
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at positions {t, 5 It]} f or which11 s (t) ]I # 0,while V* (t, z [tl) = Q at positions 
for which s (t) = 0. The next statement can be proved by the same plan as the proof 

of Theorem 1. 

Theorem 2. If sets P and Q are convex and the function x (1, t) of (2.1) 

is concave in 1 for each t E [to, @I, then the second player’s strategy V* guarantees 

him the game result (y iS] 1 t,, z,,, u, V*)> 8, (to, x0) under any admissible 

control method of the first player. 

N o t e s. 1”. Condition A can be weakened. As the proof of Theorem 1 shows, 

to construct the strategy U* solving Problem 1 it is sufficient that for the initial 

position {t;, so} there exist optimal program controls u” (f, LO) and V” (t, 1,), t,, f t < 6, 

satisfying maximum conditions (2.3) and (2.4), for which the inclusion 

{B (t) p} 3 {C (0 Ql + ho (f, 4,) 

is fulfilled for almost all f E ito, 61, In this case the assumption on the convexity 

of sets P and Q is unessential and can be dropped. 

2”. A singularity of the control method proposed, in comparison with the extremal 

aiming rule developed in [l], is that the vector s (f) used in the definitions of the 
player’s strategies is generally easier to compute than the corresponding vector 1’ [r] 

= 10 (f, 5 [#in the extremal construction. This is due to the fact that to determine 
the vector 1’ It] it is necessary to solve the extremal problem (1.3) for each current 
position {t, z [t]}. Whereas to compute the vector s (t) of (2.6) we need to know the 
solution of problem (1.3) only for the initial position [t,, q,}. It is clear that the result 

obtained is worse than when using the extremal aiming rule El] because not all of the 

opponent’s “errors” are taken advantage of. It should be noted that in comparison with 
the direct methods in game theory [S] and with the a p r i o r i stable paths [2] the 

control method we have proposed is more complicated but yields a better result from 
the view-point of one of the players. Thus, the method described above for solving 
Problems 1 and 2 falls inbetween the extremal aiming rule and the direct methods in 
differential game theory. 

3”. It can be varified that the control procedure suggested for the first player 

takes system (1.1) into the position @> = 0 no later than at the program absorption 

instant 6, (to, 20) under any admissible realization v [t], to f t < 60 of the second 

player’s control. 

3. As an example we consider a guidance problem for a conflict-controlled 
material point moving along a horizontal straight line. The point’s equations of 

motion are 

Xl *=Z x27 x; = u - v; IuI<p, IVldYY P>Y* (3.1) 

Let the game’s payoff y estimate the distance of the phase point s]ti] at a specified 
instant 6 from the origin x1 = 1% = 0, i.e., 
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All the hypotheses of Theorem 1 are fulfilled for system (3.1); therefore, the first 
player’s strategy U* can be constructed as in Definition 1. As in Cl], we select 
the following initial data zol = -7, x02 = 4, t, = 0, ?3 = 4, p = 2, and 
v= 1. Having made the necesssary computations, we get that a0 (to, x0) = 1, the 

maximum on the right hand side of (1.3) is achieved on the vector I, = (-1, 0) and 

the vector s 0) of (2.6) is determined by the equalities 

s, (t) = -zr If1 - 22 If1 (6 - 1) + ‘/e (6 - tp 

82 (f) = -52 [fl + I9 - f 

The first player’s strategy u* is determined as follows: 
1) If ~1 (f)(* - 0 -t % (f) i o for a position (t, z1 [f], ~2 Ifll then the set U* 

(t, z1 [t], zs [t]) consists of the single point 

n* If1 = 2 sign Isi (f)(6 - f) + sz (f)) 

2) If sl (f)(6 - f) + s2 (f) = 0 for a position If, x1 [fl, x2 [fIXthen L:* (f, x1 ffl, 

?2 [fl) = p, i. e. ,u* [f] is an arbitrary quantity satisfying the inequality - 2 < 

u* [t] < 2: to be specific we assume that U* If1 = 0 in this case. 

52 The realizations of the 
motions dictated by the different 

choices of strategies of the first 
and second players were calculated 

3 

1 

on a computer and are shown in 

Fig, 1. Curve 1 shows the phase 

trajectory generated by the first 

q 
player’s optimal extremal strategy 

I 

f 

UC [l]. under the condition that 

the second player selects the 

control u s 0. Curve 2 shows 
the phase trajectory corresponding 

to the first player’s strategy U* 

described in the present article, 
when the second player’s control 

is v - 0. As expected, we see 
u Xf that the magnitude y [6] = Ois -6 -4 -2 

realized in the first case, while a large value of payoff y [6], equal to 0.258, 
is realized in the second case. Curve 3 is generated by the pair {u’, vi) of optimal 

extremal strategies [l]; the motion corresponding to the strategy pair {U*, V”l takes 

place along this same curve. We note, further, that the a p r i o r i stablepath [2] 
constructed for this example also lies along curve 3. 

The author thanks E. G. Al’brekht and A. I. Subbotin for discussions on the 

work and for critical remarks. 
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